
J .  Phys. A: Math. Gen. 17 (1984) 445-453. Printed in Great Britain 

Compact self -avoiding circuits on two-dimensional lattices? 
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Abstract. Close-packed self-avoiding walks and circuits. as models for condensed polymer 
phases, are studied on the square-planar and honeycomb lattices. Exact solutions for strips 
from these lattices are obtained via transfer matrix methods. Extrapolations are made for 
the leading asymptotic terms in the count of compact conformations on the square-planar 
lattice. The leading asymptotic term for each lattice is bounded from below, and it is noted 
that boundary effects can be important. 

1. Introduction 

Conformations of polymer chains are often modelled in terms of self-avoiding walks, 
so that a condensed polymer globule would be represented by compactly packed 
self-avoiding walks on a lattice (see, e.g., Nagle 1974, Gordon et a1 1976, or Pechold 
and Grossman 1979).  Recently the importance of enumerating such compact walks 
for  Gibbs and DiMarzio’s (1958) theory of the glass transition of polymer melts has 
been much discussed (see, e.g., Gordon et a1 1976, Gujrati 1980, or Flory 1982). The 
nature (and even the existence) of the transition seems to be a question closely related 
to this enumeration problem. Another difficult problem, that of a single self-attracting 
polymer in dilute solution. reduces in the low-temperature limit to the enumeration 
of compact self-avoiding walks. For special lattices with directed bonds an exact 
enumeration method has been devised by Kasteleyn (1963) and further elaborated by 
Malakis (1976).  For more common lattices simple (mean field) formulae have been 
criticised. especially by Gujrati ( 1980);  approximate count estimates have been based 
upon counts on finite graphs (Orr  1944. Malakis 1976) and upon analytic methods 
(Gujrati 1980, Gujrati and Goldstein 1981, ten Brinkle and Karasz 1983).  

Here we address the enumeration problem for the square-planar and honeycomb 
lattices. Instead of walks we deal with circuits, i.e.. the result of joining ends of a 
self-avoiding walk whose ends occur on immediately adjacent sites. These circuits can 
represent polymer rings, but asymptotically many of their features should be the same 
as for walks. If a circuit (or walk) visits every site of a subsection of a lattice, the 
circuit is said to be Hamiltonian on the subsection. For suitable large N-site subsections 
with periphery P, the number of Hamiltonian circuits, C,.,, should behave as 

c,~,  p - ‘ K  ’% ( 1 )  
with a connective constant K b 1 and with p s 1. 
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W e  establish in 0 2 that a lower bound for K can be obtained from the enumeration 
of Hamiltonian circuits on strips of infinite length but finite width. The transfer matrix 
method used to  perform such enumerations is described briefly in § 3. In 9 4 the 
enumerations on infinite-length strips are used to establish much improved lower 
bounds for K ,  enumerations on infinite cylinders a re  used to provide accurate estimates 
of K ,  and exact enumerations on finite rectangles a re  used to  estimate p for the 
square-planar lattice. In § 5 a lower bound for K on the honeycomb lattice is given, 
as well as a proof that K = 1 for Hamiltonian circuits constrained to turn at each step 
on a square-planar lattice. 

2. Existence of and rigorous lower bounds for connective constants 

On a square-planar lattice, rigorous lower bounds for K can be obtained from the 
enumeration of circuits on strips of width w. In  particular, consider the partitioning 
of such a strip into an upper strip of width U and a lower strip of width t’. Paralleling 
the technique of Hammersley (1957), we join any Hamiltonian circuit of the width U 

strip to any Hamiltonian circuit on the width t’ strip. This is illustrated in figure 1 for 
two such circuits. The total number C,,, of Hamiltonian circuits on the strip of width 
w = U + U and length L is at  least as great as the number of Hamiltonian circuits 
produced by joining circuits on the strips of widths U and U. Since this latter number 
of Hamiltonian circuits is given by the product of the number on U -  and v-width strips, 

C L X ,  3 C,X,CL,,. ( 2 )  

,T 
L J L  , I  

L m  
I “ ,  

T ‘\ 

Figure 1. Example for the joining of two  Hamiltonian circuits. each on 3 X L strips. to 
form a single Hamiltonian circuit on a 6 x L strip. The joining is accomplished by deleting 
the two bonds with a X and adding two bonds where indicated by the broken lines. 

The number of circuits on a N-point lattice, however, is bounded by q N ,  where q is the 
coordination number of the lattice. Thus the function 

L w  = N, (3) 
is non-negative and according to (2) satisfies 

f ( L  U + U )  .=ff(L, U )  +f(t, U). (4) 
It is known (see, e.g., Mille 1948) fo r  such so-called ‘subadditive’ functions that the 
w + CO limit of f ( L ,  w ) /  w exists. Since f ( L ,  w ) /  w is symmetric in w and L, the L + m 
limit of f (L ,  w ) / w  and consequently of f ( L ,  w )  exists. If we define this limit as 

F (  w )  lim f ( L ,  w )  
L-X 
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then according to (4),  F also satisfies 

F (  U + U )  G F (  U )  + F (  U ) .  

Since F (  w) is a non-negative, subadditive function, the w --* E limit of F (  w)/ w exists. 
Consequently the function 

In K ,  = lim ( W L ) - '  In C,,, 
L - x  

N = wL, 

=In  9 - F (  w)/ w 

has a limit as w --* X. From (6) with U = U it follows that 

K z u  2 K u .  

In fact for general positive integer m, one has 

K m u  3 Ku.  (9) 

Thus K ,  will increase as w increases through integer multiples, eventually approaching 
the limiting value K .  

Similar techniques apply for compact (non-cyclic) walks. They entail different 
configuration counts, CL,+ and values for K',.,. The situation is analogous to that 
already discussed (Klein 1980) for loosely packed self-avoiding walks and circuits. In 
fact analogous techniques may be used (as done there in appendices B and C) to  show 
that K ,  and K I ,  approach the same limit as w + W. 

3. Transfer matrix method for Hamiltonian circuits on strips 

The method we use to  treat Hamiltonian circuits may be illustrated with an example 
on a strip of width w = 3. In figure 2 is shown a particular such circuit on a strip of 
length 10, and below the circuit is shown a sequence of labels whose utility will be 
indicated. Each of the three labels in figure 3 indicates a possible circuit 'state' at  a 
given horizontal position along the w = 3 strip: the horizontal lines indicate which 
bonds a re  occupied by the circuit at  that position; and the curved connecting lines 
indicate which pairs of bonds are connected by the circuit via a path entirely to  the 
left of the current position. (Actually these connections only need t o  be used when 
dealing with four or  more occupied bonds, on wider strips.) The  appropriate state 

a P a  

Figure 3. The three possible column states which 
occur in describing Hamiltonian circuits on a strip 
of width w = 3. 

Figure 2. Example of a Hamiltonian circuit on 
a 3 x 10 section of the square-planar lattice. 
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labels at  different positions along the circuit of figure 2 are indicated there. The picture 
labels a re  also given more abbreviated letter labels in figure 3. Now let N l ( [ )  be the 
number of ways a long circuit may achieve a state 6 at position 1 along the strip. Then 
it is seen that 

Nl+l(a)  = N/(P)> Nl+I(P) = N/(a)+N/(Y)r N / + , ( Y )  =NAP). (10) 

If we introduce column vectors Nl with 6th component N I ( ( )  and an  appropriate 
transfer matrix T of zeros and ones, the recurrence relation (10) may be informatively 
condensed to 

Iteration of this relation yields 

=T'N,. (12) 

Now for very large 1 the maximum magnitude eigenvalue(s) of T dominate. When 
there is a single maximum magnitude eigenvalue A ,  

N/(6 )+  a,A', l+x, (13) 

with a,  proportional to the 6th component of the corresponding eigenvector. This 
situation seems to apply to  even-width strips on the square-planar lattice, while for 
odd-width strips there are two maximum magnitude eigenvalues + A  and -A. In this 
second case one can still view (13) to hold with different values of aE for odd and even 
values of 1. (Actually this second maximum magnitude eigenvalue is associated with 
the non-existence of Hamiltonian circuits on odd-width strips of odd length. this latter 
fact being true since Hamiltonian circuits on a bipartite lattice must contain an even 
number of sites.) 

Thus asymptotic enumeration for strips can be achieved simply by solving for the 
maximum eigenvalue of T. Enumeration for finite length strips is achieved via recur- 
rence with T as in (1  1) ;  initial vectors NI must then be identified, e.g., for w = 3 the 
initial vector is N l ( a )  = N , ( y )  =0 ,  N , ( P )  = 1. For wider strips the state labels, 
analogous to those of figure 2, are more complicated and have been described previously 
(Klein 1980, Derrida 1981).  Since the number of these state labels increases exponen- 
tially with w, our present calculations on the square-planar lattice have been limited 
to strips of width w = 11 (where there a re  5797 states). This proves sufficient t o  discern 
some trends and to make some extrapolations for w + a. 

4. Numerical results for the square-planar lattice 

Numerical results tor K, for various strips based upon the square-planar lattice are 
reported in table 1. Evidently even- and odd-width strips form two differently behaving 
families. Now the overall conformational entropy is expected to be size-extensive, 
i.e., proportional to the number of sites N, and the first corrections due to  the boundary 
a re  expected to be proportional to N/w, the length of the boundary. Hence In K,, 

the entropy per site, should behave as 

In K, = ln K~ + CW*, d = - 1 .  (141 
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Table 1. Enumeration results for compact circuits on infinite strips. 

W K w  W K w  

2 1.000 000 3 1.122462 
4 1.262 261 5 1.271 171 
6 1.334 651 7 1.334 217 
8 1.369 621 9 1.367 950 

10 1.390 388 11 1.388 686 

In addition the scaling argument of Daoud and de Gennes (1977) predic 
to be 

+ = l - l / v  

s this exponent 

where v is the exponent such that the linear extent of an N-step circuit (or walk) is 
-N” on the extended lattice from which the strip is cut. Since v = 4 for compact walks 
in two dimensions, this scaling argument also predicts + = -1. Finally such a form is 
expected for strips from the so-called Manhattan lattice which has been exactly solved 
by Kasteleyn (1963). 

The values reported for K ,  form rigorous lower bounds converging toward K,. 

Extrapolating the data of table 1, we find for K ,  a value which is slightly greater than 
1.47. However, an even more accurate estimate of K ,  is obtained from calculations 
on tubes (i.e., hollow cylinders) of circumference w. Higher accuracy is anticipated 
since the lateral edges are eliminated, so that presumably the leading correction term 
of order 1/ w giving the deviation of In K ,  from In K ,  is eliminated. The tube data of 
table 2 as plotted in figure 4 tend to confirm this. Thus we have fitted the In K, values 
for both even and odd widths to separate polynomials in 1/ w, subject to the constraints 
that both polynomials have the same w = 03 intercept and that the term linear in 1/ w 
be absent. From this fit we estimate a value of K slightly less than 1.472. 

The In K ,  values for even- and odd-width strips were then fitted to polynomials in 
1/ w with the constraint that the w = 00 intercept be that derived from the fit for 
cylinders. This allowed values for the constant c from equation (14) to be extracted 
separately for the even- and odd-width strips. That =ec’* comes out to be very 
nearly the same, namely about 0.76 for both the odd- and even-strip data, is evidence 
in support of the conjecture of the functional form in equation (1). 

A further test of the functional form of (1) is achieved using the finite-rectangle 
data of table 3, which was computed by direct recurrence of (1 1). Of course the counts 
C,,, for a w by L rectangle are symmetric under interchange of w and L. Thus if 
the (wL)th root of C,,, is represented as a series in inverse powers of w and L, this 

Table 2. Results for compact circuits on tubes. 

4 1.389 91 1 3 1.259 921 
6 1.444 327 5 1.396 883 
8 1.458 671 7 1.433911 

10 1.464 290 9 1.449 194 



450 T G Schmalz, G E Hite and D J Klein 

0 

1 : -  
0.01 0.02 0.03 0.04 0.05 0.06 

1 t w z  

Figure 4. Graphs of In K, against 1/ w 2  with circles and pluses marking even- w and odd- w 
data points, respectively. It appears that straight lines through successive (even- w or 
odd-w) points approach a limit with finite non-zero slope. Straight lines for the last pairs 
of points are  shown. 

Table 3. Exact counts on m X n rectangles. 

m \ 4 6 8 10 

4 6 37 236 1517 
6 37 1072 32 675 1 024 028 
8 236 32 675 4 638 576 681 728 204 

10 1517 1 024 028 681 728 204 467 260 456 608 
12 9 770 32 463 802 102 283 239 429 
14 62 953 1033917350 15 513 067 188 008 
16 405 688 32 989 068 162 2 365 714 170 297 014 
18 2 614 457 1053 349 394 128 
20 16849006 33643541208290 

power series should be symmetric also. Then the expression 
4 w - 4  1/8 { c, x w / C( w- 2 ,  x ( w- 2 )  K 1 

should yield p except for corrections of order W - " ,  n 3 2. The data of table 3 give 
the values 0.701, 0.728, 0.737, 0.742 for this expression and lead to an estimate of 
p -0.75. This is in very good agreement with the value p ~ 0 . 7 6  derived from the 
infinite strips. 

Our results may be compared with earlier bounds and estimates. The value of 
1.338 found by Kasteleyn (1963) for K from the Manhattan lattice is (Gordon er a1 
1976) a lower bound to K for the square-planar lattice. The bounds of 1.1058 and 
1.1824 obtained from the formulas of Gujrati (1980) and Gujrati and Goldstein (1981) 
are somewhat poorer. Our best bound of 1.3904 improves on all these previous lower 
bounds and disproves the speculation (Gordon et a1 1976, ten Brinkle and Karasz 
1983) that Kasteleyn's result might also be exact for the square-planar lattice. An 
upper bound of 1.539 07 is provided (Domb 1974) by an exact solution (Lieb 1967) 
of an ice model. Most previous estimates are outside the range of the now best upper 
and lower bounds. Two exceptions are the estimate of 1.4 by Orr (1944) and a mean 
field value (Huggins 1942) of 1. 
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4. More systems 

First we consider a close-packed circuit made on a square-planar lattice but with the 
constraint that the walk made a 90’ turn at each step. Here the basis states of the 
transfer matrix identify the nature of a circuit in a ‘vertical’ column of sites at a 
‘horizontal’ position; this is partially achieved by specifying which of the four 
possibilities of figure 5 occurs at each circuit site in the column. Now if such a 
specification of what occurs at the starred site of figure 6(a)  is given, then what must 
occur at the adjacent unstarred site also adjacent to an edge is determined. Likewise 
if what occurs at the two starred sites of figure 6(b) is specified, then what occurs at 
the mutually adjacent unstarred site is determined. As a consequence the column state 
arising from a given state at the preceding column is unique. This is even true for the 
initial column state which can be considered to be the unique one following the ‘empty’ 
column state. Since all the column states are unique, there can be no more than one 
such Hamiltonian circuit on any subsection of the square-planar lattice. In some cases, 
such as for a rectangular subsection, there are no Hamiltonian circuits. Rather similar 
arguments also apply to Hamiltonian walks making 90” turns at each step. With the 
specification of the lattice subsection and the locations of the walk ends it turns out 
there is no more that one Hamiltonian walk. Hence if it is not specified where the 
ends of a walk are located, we see that there must be no more than $N(N-1) 
Hamiltonian walks on the given lattice subsection. Thus, for both circuits and walks, 
we have K = O  or 1, this latter value being surmised by Gordon et al (1976) using a 
computer study of finite cases. 

Figure 5. The four possible bond arrangements around each site for a Hamiltonian circuit 
with right angle turns at each position on a section of the square-planar lattice. 

------_-------- 
. * a . .  . . * . .  
. . . . .  . * a . .  

l a  I I b l  
. . . . .  . . . . .  

Figure 6. Locational arrangements for various sites discussed in the text. 

For the honeycomb lattice we consider a strip such as in figure 7, where a representa- 
tive circuit is displayed. Also shown just below the strip is a sequence of column states, 
of which three are distinct. Following the procedure outlined in 0 2, we find a transfer 
matrix 

.-(% p 8 )  (17) 

which has a maximum eigenvalue of A =&. Now between one column state and the 
next there are 14 sites, so the circuit count per site for a very long strip is K = A ‘’14 2: 
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Figure 7. The left-end portion of a ‘zig-zag’ strip three hexagons wide, and a circuit which 
is Hamiltonian on the strip if the three points in the lower left are deleted as well as a few 
points near the (unshown) right end. The column state labelling is similar to that for strips 
from the square-planar lattice. 

1.025 064. As in the discussion of 0 2 this pr_ovides a lower bound to the value for 
the whole lattice. A better lower bound of (J5)’”’= 1.045 721 is obtained on a strip 
alternating between three and four hexagons in width. 

There is a critical point in the proof that the  value for a strip is a lower bound 
for an extended lattice. This point involves the joining together of circuits on two 
adjacent strips to obtain a single circuit covering both strips, as done in § 2 for the 
square-planar lattice. On the honeycomb lattice it seems that this adjoining can most 
readily be done missing a site or two interior to but near the end of the strip. (Indeed 
a few sites might be missed in beginning a circuit on a strip.) Still these ‘interior’ 
missed sites are very few in number in comparison to the bulk number N of sites. 
These missed interior sites increase the ‘boundary’ of the polymer globule, while the 
boundary still retains a minimal scale dependence on N. For the two-dimensional case 
the ratio of the boundary to the bulk number is -N-1’2 . Here the transfer matrix 
method we have used treats K as a bulk property. For compact walks on a honeycomb 
lattice we have K a 1.0457 rather than K = 1 as suggested as a possibility from the 
work of Gordon er a1 (1976) with special boundary conditions, which do not miss any 
interior sites. 

6. Discussion and conclusion 

The boundary effects are worthy of note. The problems we have described for the 
honeycomb lattice also occur on others. For instance, if from a square-planar lattice 
one cuts a square with sides along the diagonal directions in the lattice, then it is 
readily verified that there are no Hamiltonian circuits on this subsection; however, if 
one cuts out a square with sides parallel to the lattice axes, then as found in § 4 there 
can be many Hamiltonian circuits. It may be proper to distinguish Hamiltonian circuits 
(or walks) from compact ones, where we define compact circuits (or walks) to be those 
with ‘boundary’ sites forming a fractional part vanishing in the limit of large circuits, 
or walks. A boundary site is defined to be one adjacent to a lattice-graph site that is 
not visited by the circuit. (Note that the boundary sites of a circuit are not necessarily 
the same as the periphery of the lattice section on which the circuit is embedded.) 
The transfer matrix approach is seen to focus naturally on these physically relevant 
compact structures. 
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Evidence has been found that the Hamiltonian-circuit count depends on the enclos- 
ing periphery as indicated in equation (1). But for compact circuits not bound within 
a fixed periphery, it may be that the enumeration formula of (1) is modified. In 
particular the I.L‘ factor might ‘collapse’, to perhaps an Nu factor, such as is found 
for non-compact self-avoiding walks. 

In conclusion, we have obtained new values for the leading asymptotic term in the 
enumeration of compact circuits: K = 1.472 for the ‘three-choice’ square-planar lattice; 
K = 1 exactly for the ‘two-choice’ square-planar lattice; and K 2 1.0457 for the honey- 
comb lattice. Next to these estimates the closest previous estimates for these unoriented 
lattices seem to be those obtained from-Huggins’ (1942) early formula, which gives 
corresponding K values of $, 1, and 2/J3. 
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